New results from HARP-CDP and the "LSND anomaly" Friedrich Dydak CERN (friedrich.dydak@cern.ch) Fermilab, January 14, 2011 ## **LSND** Beam dump experiment in Los-Alamos Data taking 1993-1998 - Claimed evidence for $\bar{\nu_{\mu}} \!\! \to \!\! \bar{\nu_{e}}$ oscillations - This claim became known as "LSND anomaly" #### The "LSND anomaly" Excess of $87.9\pm22.4\pm6.0$ v_e events (3.8 σ) LSND anomaly: in conflict with the measurements of solar and atmospheric neutrino oscillations At least one more light neutrino needed, but this contradicts LEP: N_v = 2.9840±0.0082 Existence of at least one 'sterile' neutrino is required SPIRES: 800 theoretical papers on sterile neutrinos (700 after 1998) ## **Test by MiniBooNE** G.Mills, ICHEP2010 #### The LSND neutrino source Copper beam stop Water target Isotope Production **Targets** A-6 Window Proton Beam PLAN VIEW, NEUTRINO SOURCE Geometry of 1993-1995 C.Athanassopoulos et al., NIM A388 (1997) 149-172 #### The LSND neutrino source **DAR** = Decay at Rest **DIF** = Decay in Flight ## The HARP experiment (1/2) - Proton and π^{\pm} beams of 1.5 15 GeV/c - Targets: Be C Al Cu Sn Ta Pb H_2 $D_2 N_2 O_2$ $H_2 O$ Large Angle Spectrometer: 20°<θ<140° #### **HARP-CDP** data vs LSND parametrization $$p(1.5 \text{ GeV/c}) + A \rightarrow (\pi^+,\pi^-) X$$ #### The HARP-CDP simulations #### Two independent simulations #### **Geant4-based** - Detailed description of geometry - Geant4 or LSND cross-sections #### **Standalone** - Less detailed geometry - LSND, FLUKA or Geant4 cross-sections - Experimental cross-sections #### Give consistent results #### PRETTY COMPLICATED TASK Need differential pion production cross-sections: - of p, n, π^+,π^- - on H₂O, Fe, Cu, Al, Mo, Air - as a function of projectile momentum #### Pions from different models ## Pion momentum spectra ## **Pion generations** ## Pion production by 600 MeV neutrons K.O. Oganesian, JETP 54 (1968) 1273 | | LSND
published
(1993-1995) | |---|----------------------------------| | π-/π+ | (0.12) | | DAR v [v/PoT/cm ²] | 0.8 ×10 ⁻⁹ | | DAR v _e [v/PoT/cm ²] | 0.65 ×10 ⁻¹² | | | LSND
published
(1993-1995) | LSND
"emulation" | |---|----------------------------------|-------------------------| | π-/π+ | (0.12) | 0.20 | | DAR v [v/PoT/cm ²] | 0.8 ×10 ⁻⁹ | 0.60 ×10 ⁻⁹ | | DAR v _e [v/PoT/cm ²] | 0.65 ×10 ⁻¹² | 0.59 ×10 ⁻¹² | | | LSND
published
(1993-1995) | LSND
"emulation" | Geant4 +
Exp. data | |---|----------------------------------|-------------------------|-------------------------| | π-/π+ | (0.12) | 0.20 | 0.36 | | DAR v [v/PoT/cm ²] | 0.8 ×10 ⁻⁹ | 0.60 ×10 ⁻⁹ | 0.78 ×10 ⁻⁹ | | DAR v _e [v/PoT/cm ²] | 0.65 ×10 ⁻¹² | 0.59 ×10 ⁻¹² | 0.96 ×10 ⁻¹² | | | LSND
published
(1993-1995) | LSND
"emulation" | Geant4 +
Exp. data | FLUKA +
Exp. data | |---|----------------------------------|-------------------------|-------------------------|-------------------------| | π-/π+ | (0.12) | 0.20 | 0.36 | 0.34 | | DAR v [v/PoT/cm ²] | 0.8 ×10 ⁻⁹ | 0.60 ×10 ⁻⁹ | 0.78 ×10 ⁻⁹ | 0.76 ×10 ⁻⁹ | | DAR v _e [v/PoT/cm ²] | 0.65 ×10 ⁻¹² | 0.59 ×10 ⁻¹² | 0.96 ×10 ⁻¹² | 0.88 ×10 ⁻¹² | # Background I (genuine $\overline{\mathbf{v}}_{e}$) | LSND published | HARP-CDP conjecture | |----------------|---------------------| | 19.5 +/- 3.9 | 30.6 +/- 8.8 | # Background II (fake \bar{v}_e) | Reaction | Background II type | No. events | | |--|--|----------------|---------------------| | | | LSND published | HARP-CDP conjecture | | $\bar{\nu}_{\mu} p \rightarrow \mu^{+} n$ | | | | | The State of S | $T_{\mu} < 3 \text{ MeV}$ | 8.2 | 10.8 ± 8.0 | | ν_{μ} ¹² C $\rightarrow \mu^{-12}$ N | | | | | = 172
 | $^{12}N^*$, $T_{\mu} < 3 \text{ MeV}$, | 1.4 | 1.8 ± 1.8 | | Acces Agreed | μ^- capture | 49 | 0.2 ± 0.2 | | $\bar{\nu}_{\mu}$ ¹² C $\rightarrow \mu^{+}$ ¹² B | | | | | | $T_{\mu} < 3 \text{ MeV}$ | 0.4 | 0.5 ± 0.5 | | Otherwise missed muon | | 70. | | | | | 0.4 ± 0.14 | 0.4 ± 0.14 | | $\mu^- \rightarrow e^- \; \bar{\nu}_e \; \nu_\mu, \pi^- \rightarrow e^- \; \bar{\nu}_e$ | | | | | | $ar{ u}_{ m e}$ events | 0.1 ± 0.1 | 0.1 ± 0.1 | | SUM | | 10.5 ± 4.6 | 13.8 ± 8.2 | ## LSND analysis strategy #### 1. "Primary electron" Electron (positron, γ , proton, ...) with 20 < E < 60 MeV No action within 12 μ s before the event No action within 8 μ s after the event #### 2. "R_v criterion" Filters out events with a "correlated γ" that is consistent with arising from neutron capture: $$n + p \rightarrow d + 2.2 \text{ MeV } \gamma$$ R_{γ} = Likelihood that the γ is correlated divided by the Likelhood that the γ is uncorrelated Likelyhood = prob(Δr) × prob(Δt) × prob(pulseheight) ## Correlated y ## Correlated γ vs uncorrelated γ **HARP-CDP** simulation LSND published ## **But something is missing** ## Correlated γ vs uncorrelated γ vs β # R_{γ} corr. vs R_{γ} uncorr. vs R_{β} Without accidental y's With accidental γ's (1.1 kHz) # Signal significance | | LSND published | HARP-CDP conjecture | |---------------|------------------|---------------------| | Beam excess | 117.9 ± 22.4 | 110.0 ± 22.4 | | Background I | 19.5 ± 3.9 | 30.6 ± 8.8 | | Background II | 10.5 ± 4.6 | 13.8 ± 8.2 | | LSND anomaly | 87.9 ± 23.2 | 65.6 ± 25.4 | | Significance | 3.8σ | 2.6σ | 110.0 +/- 22.4 PRELIMINARY! #### LSND's cross-checks | Reaction | Theor, uncertainty | Constrains | Comment | |---|--|--|-------------| | $\nu_{\rm e}^{-12}{ m C} ightarrow { m e}^{-12}{ m N}_{\rm ga}$ | 5% | ν_e from μ^+ DAR and
all π^+ to 11% | 'hard' | | ν e $\rightarrow \nu$ e | 1% | ν_e from μ^+ DAR and
all π^+ to about 20% | nothing new | | ν_{μ} ¹² C $\rightarrow \mu^{-}$ ¹² N _{gs} | 5% | $\nu_{\mu} > 123.7$ MeV and
high-momentum DIF π^+
to 17% | 'hard' | | ν_{μ} ¹² C $\rightarrow \mu^{-}$ X
+ $\bar{\nu}_{\mu}$ ¹² C $\rightarrow \mu^{+}$ X
+ $\bar{\nu}_{\mu}$ p $\rightarrow \mu^{+}$ n | factor of 2 (?)
factor of 2 (?)
5% | Cross-section of
ν_{μ} $^{12}C \rightarrow \mu^{-} X$
to 17% | 'hard' | | $\nu_{\mu}^{12}C \rightarrow \mu^{-} n X$
+ $\bar{\nu}_{\mu}^{12}C \rightarrow \mu^{+} n X$
+ $\bar{\nu}_{\mu} p \rightarrow \mu^{+} n$ | (?) | $\bar{\nu}_{\mu} > 113.1 \text{ MeV and}$
high-momentum DIF π^-
to 32% | 'soft' | | $\nu_{\mu} \stackrel{12}{\sim} C \rightarrow \mu^- n X$ | | $123.7 < E_{\nu} < 127.7 \text{ MeV}$
to 35% | 'very soft' | | $\bar{\nu}_{\mu}$ p $ ightarrow$ μ^{+} n | | $113.1 < E_{\nu} < 117.1 \; { m MeV}$
to 60% | 'very soft' | ## **Summary** - Independent simulation of the background to the LSND $\bar{\nu_e}$ signal carried out - FLUKA and Geant4 cross-sections used as starting point, adjusted by HARP-CDP data and experimental pion production by neutrons - Re-analysis of the fraction of events with a correlated neutron carried out - The 3.8 σ significance of the LSND anomaly reduces (preliminarily) to a 2.6 σ significance #### The HARP-CDP group - A. Bolshakova, I. Boyko, G. Chelkov, D. Dedovich, - A. Elagin, D. Emelyanov, M. Gostkin, A. Guskov, - Z. Kroumchtein, Yu. Nefedov, K. Nikolaev, - A. Zhemchugov, F. Dydak, J. Wotschack, - B. De Min, V. Ammosov, V. Gapienko, - V. Koreshev, A. Semak, Yu. Sviridov, E. Usenko, - V. Zaets # **Backup** ## **Test by MiniBooNE** ## Direct MiniBooNE-LSND Comparison of \overline{v} Data G.Mills, ICHEP2010 ## The "LSND anomaly" A. Aguilar et al., PRD64 (2001) 112007 Δm^2 in the range of $0.2 - 10 \text{ eV}^2$ # The LSND experiment ## The LSND neutrino source (side view) ELEVATION VIEW, NEUTRINO SOURCE Air High Z Material C.Athanassopoulos et al., NIM A388 (1997) 149-172 Geometry of 1993-1995 ## The HARP experiment Good particle identification by combining dE/dx from TPC and TOF from RPCs ## The HARP experiment Allows to check an important ingredient of the LSND background: the production of π^- by 1.5 GeV/c protons